Ch. 9 Chemical Equilibrium

Return to TOC

dyanmic equilibrium: concentration remains constant, but reactions are occuring at a molecular level
the reaction occurs at the same rate in one direction as the other

Equilibrium Expression

In a balanced, simplified equilibrium reaction aA+bBpP+nN\ce{aA + bB <=> pP + nN},
Kc=[P]p[N]n[A]a[B]bK_c=\frac{[P]^p[N]^n}{[A]^a[B]^b}

Example

What is the equilibrium expression for the combustion of propane (CX3HX8\ce{C3H8})?


The balanced equilibrium reaction is CX3HX8+5OX24HX2O+3COX2\ce{C3H8 + 5O2 <=> 4H2O + 3CO2}
So, the equilibrium expression is
Kc=[HX2O]4[COX2]3[CX3HX8][OX2]5K_c=\frac{[\ce{H2O}]^4[\ce{CO2}]^3}{[\ce{C3H8}][\ce{O2}]^5}

In general, only aqueous substances (and mixed gases) are included, i.e. solids/liquids are ignored

Example

Given the following reactions and equilibrium constants:
AgX+(aq)+ClX(aq)AgCl(s)Kc=5.6109\begin{matrix}\ce{Ag+(aq) + Cl-(aq) <=> AgCl(s)} && K_c=5.6\cdot10^9\end{matrix}
AgX+(aq)+2NHX3(aq)Ag(NHX3)X2X+(aq)Kc=1.6107\begin{matrix}\ce{Ag+(aq) + 2NH3(aq) <=> Ag(NH3)2+(aq)} && K_c=1.6\cdot10^7\end{matrix}
Calculate the equilibrium constant for
AgCl(s)+2NHX3(aq)Ag(NHX3)X2X+(aq)+ClX(aq)\ce{AgCl(s) + 2NH3(aq) <=> Ag(NH3)2+(aq) + Cl-(aq)}


The third equation can be obtained by adding the second equation with the reverse of the first equation.
So, the equilibrium constant desired is Kc=(1.6107)(15.6109)=2.9103K_c=(1.6\cdot10^7)(\frac{1}{5.6\cdot10^9})=2.9\cdot10^{-3}


Using the Equilibrium Constant

Example 1

Is the reaction in equilibrium?
HX2(g)+IX2(g)2HI(g)Kc=49\begin{matrix}\ce{H2(g) + I2(g) <=> 2HI(g)}&&K_c=49\end{matrix}
[HX2]=0.10 M[\ce{H2}]=\pu{0.10 }M; [IX2]=0.1 M[\ce{I2}]=\pu{0.1 }M; [HI]=0.70 M[\ce{HI}]=\pu{0.70 }M


Calculate the reaction quotient:
Q=0.7020.10.1=49Q=\frac{0.70^2}{0.1\cdot0.1}=49
Since Q=KcQ=K_c, the reaction is in equilibrium.

Example 2

Which direction will the following reaction go in?
HF(aq)+HX2O(l)FX(aq)+HX3OX+(aq)Kc=6.8104\begin{matrix}\ce{HF(aq) + H2O(l) <=> F-(aq) + H3O+(aq)}&&K_c=6.8\cdot10^{-4}\end{matrix}
[HF]=0.20 M[\ce{HF}]=\pu{0.20 }M; [FX]=2.0104 M[\ce{F-}]=\pu{2.0*10^{-4} } M; [HX3OX+]=2.0104 M[\ce{H3O+}]=\pu{2.0*10^-4 }M


Calculate the reaction quotient, noting that water is ignored
Q=(2.0104)(2.0104)0.20=2.0107Q=\frac{(2.0\cdot10^{-4})(2.0\cdot10^{-4})}{0.20}=2.0\cdot10^{-7}
Since Q<KcQ<K_c, the reaction favors the products and move right

RICE Tables

Example 1

If 0.250 M\pu{0.250 } M each of NOX2\ce{NO2}, SOX2\ce{SO2}, NO\ce{NO}, and SOX3\ce{SO3} are mixed until equilibrium is reached, 0.261 M\pu{0.261 } M of NOX2\ce{NO2}
was measured in the container. What is the equilibrium constant for this reaction?


We start the RICE table with the balanced reaction

ReactionNOX2(g)\ce{NO2(g)}++SOX2(g)\ce{SO2(g)}\ce{<=>}NO(g)\ce{NO(g)}++SOX3(g)\ce{SO3(g)}
Initial
Change
Equilibrium

Next we fill in the known information, including initial concentration, the change, and the equilibrium expressions

ReactionNOX2(g)\ce{NO2(g)}++SOX2(g)\ce{SO2(g)}\ce{<=>}NO(g)\ce{NO(g)}++SOX3(g)\ce{SO3(g)}
Initial0.250 M\pu{0.250 }M0.250 M\pu{0.250 }M0.250 M\pu{0.250 }M0.250 M\pu{0.250 }M
Change+x+x+x+xx-xx-x
Equilibrium0.250+x0.250+x0.250+x0.250+x0.250x0.250-x0.250x0.250-x

Since the equilibrium concentration of NOX2\ce{NO2} is 0.261 M\pu{0.261 }M,
0.250+x=0.261x=0.0110.250+x=0.261\rightarrow x=0.011
So, the equilibrium constant is
Kc=(0.250x)(0.250x)(0.250+x)(0.250+x)=0.23920.2612=0.839K_c=\frac{(0.250-x)(0.250-x)}{(0.250+x)(0.250+x)}=\frac{0.239^2}{0.261^2}=0.839

Example 2

A container is filled with 0.200 M\pu{0.200 }MBrCl\ce{BrCl}. Given the following equation, what is the equilibrium concentration of BrX2\ce{Br2} and ClX2\ce{Cl2}?
BrX2+ClX22BrClKc=6.90\begin{matrix}\ce{Br2 + Cl2 <=> 2BrCl}&&K_c=6.90\end{matrix}


Create the RICE table

ReactionBrX2\ce{Br2}++ClX2\ce{Cl2}\ce{<=>}2BrCl\ce{2BrCl}
Initial0 M\pu{0 }M0 M\pu{0 }M0.200 M\pu{0.200 }M
Change+x+x+x+x2x-2x
Equilibriumxxxx0.2002x0.200-2x

Now, we can make the equilibrium expression
Kc=6.90=(0.2002x)2x22.627=0.2002xxx=0.0432K_c=6.90=\frac{(0.200-2x)^2}{x^2}\rightarrow 2.627=\frac{0.200-2x}{x}\rightarrow x=0.0432
So, the final concentrations are [BrX2]=0.0432 M[\ce{Br2}]=\pu{0.0432 }M, [ClX2]=0.0432 M[\ce{Cl2}]=\pu{0.0432 }M, and [BrCl]=0.114 M[\ce{BrCl}]=\pu{0.114 }M

If KcK_c is very small, xx may be ignored where it is added or subtracted due to approximations

Example

If 2.00 moles\pu{2.00 moles} of SOX3\ce{SO3} is placed in a 1.00 L\pu{1.00 L} flask, what are the final concentrations of the substances in the flask?
2SOX3(g)2SOX2(g)+OX2(g)Kc=2.41025\begin{matrix}\ce{2SO3(g) <=> 2SO2(g) + O2(g)}&&K_c=2.4\cdot10^{-25}\end{matrix}


Create the RICE table, noting that [SOX3]=2.00 mol1.00 L=2.00 M[\ce{SO3}]=\frac{\pu{2.00 mol}}{\pu{1.00L}}=\pu{2.00 }M

Reaction2SOX3\ce{2SO3}\ce{<=>}2SOX2\ce{2SO2}++OX2\ce{O2}
Initial2.00 M\pu{2.00 }M0 M\pu{0 }M0 M\pu{0 }M
Change2x-2x+2x+2x+x+x
Equilibrium2.002x2.00-2x2x2xxx

Plugging into the equilibrium expression,
Kc=2.41025=x(2x)2(2.002x)2K_c=2.4\cdot10^{-25}=\frac{x(2x)^2}{(2.00-2x)^2}
Since KcK_c is so small, it can be assumed that xx is also very small, so 2.002x2.002.00-2x\approx 2.00, making the equation
Kc=2.41025=x(2x)2(2.00)2x3=2.41025x=6.2109K_c=2.4\cdot10^{-25}=\frac{x(2x)^2}{(2.00)^2}\rightarrow x^3=2.4\cdot10^{-25}\rightarrow x=6.2\cdot10^{-9}
So, the final concentrations are [SOX3]=2.00 M[\ce{SO3}]=\pu{2.00 }M, [SOX2]=1.2108[\ce{SO2}]=1.2\cdot10^{-8}, and [OX2]=6.2109[\ce{O2}]=6.2\cdot10^{-9}

Since PV=nRTPV=nRT can be rearranged to be nV=PRT\frac{n}{V}=\frac{P}{RT}, the molar concentration is proportional to the pressure under a constant temperature.
So, the same equation and process may be used with partial pressures and the equilibrium constant KpK_p
In general, Kp=Kc(RT)ΔngK_p=K_c(RT)^{\Delta n_g}
where KpK_p is equilibrium pressure, KcK_c is equilibrium concentration, RR is the ideal gas constant, TT is the Kelvin temperature, and Δng\Delta n_g is the change in the number of moles of gas in the balanced reaction


Solubility Product

In determining if a solid is soluble, we use KspK_{sp}
Usually the equation looks like aA(s)bB(aq)+cC(aq)\ce{aA(s) <=> bB(aq) + cC(aq)}, so Ksp=[B]b[C]cK_{sp}=[B]^b[C]^c

Example

If the molar solubility of MgFX2\ce{MgF2} is 1.18103 mol/L\pu{1.18*10^-3 mol/L}, what is KspK_{sp}?


Set up the RICE table

ReactionMgFX2\ce{MgF2}\ce{<=>}MgX2+\ce{Mg^2+}++2FX\ce{2F-}
InitialSolid0 M\pu{0 }M0 M\pu{0 }M
Change-+x+x+2x+2x
Equilibrium-xx2x2x

We know the molar solubility is x=1.18103x=1.18\cdot10^{-3}, so the expression for KspK_{sp} is
Ksp=[MgX2+][FX]2=4x3=4(1.18103)3=6.57109K_{sp}=[\ce{Mg^2+}][\ce{F-}]^2=4x^3=4(1.18\cdot10^{-3})^3=6.57\cdot10^{-9}

Weak-Acid/Weak-Base Equilibria

Weak acids and bases ionize partly when dissolved in water

Le Châtlier's Principle